论文标题
两种物种竞争性趋化系统的波动波解决方案
Traveling wave solutions for two species competitive chemotaxis systems
论文作者
论文摘要
在本文中,我们考虑了两个具有Lotka-Volterra竞争反应术语的物种趋化系统。在适当的条件下,我们建立了连接两个在空间均匀的平衡溶液的系统的行驶波解决方案的存在,而波速大于某些临界数C*。我们还显示了这种行进波的不存在,其速度小于与趋化性无关的临界数C*_0小。此外,在反应术语系数上的合适假设下,我们获得了趋化性敏感性系数的明确范围,以确保C*= C*_0,这意味着最小波速存在并且不受化学吸收剂的影响。
In this paper, we consider two species chemotaxis systems with Lotka-Volterra competition reaction terms. Under appropriate conditions on the parameters in such a system, we establish the existence of traveling wave solutions of the system connecting two spatially homogeneous equilibrium solutions with wave speed greater than some critical number c*. We also show the non-existence of such traveling waves with speed less than some critical number c*_0, which is independent of the chemotaxis. Moreover, under suitable hypotheses on the coefficients of the reaction terms, we obtain explicit range for the chemotaxis sensitivity coefficients ensuring c*= c*_0, which implies that the minimum wave speed exists and is not affected by the chemoattractant.