论文标题

深图的展开图像denoising

Unrolling of Deep Graph Total Variation for Image Denoising

论文作者

Vu, Huy, Cheung, Gene, Eldar, Yonina C.

论文摘要

虽然深度学习(DL)体系结构(例如卷积神经网络(CNN))使有效的解决方案在图像denoising中,总的来说,他们的实现过于依赖训练数据,缺乏解释性并需要调整大型参数集。在本文中,我们将经典的图形信号滤波与深度特征学习结合到竞争性混合设计中,该设计利用可解释的分析低通滤波器滤波器,并且比最先进的DL DENOISING SCOPED DNCNN使用的网络参数少80%。具体而言,要构建用于图形光谱过滤的合适相似性图,我们首先采用CNN来学习每个像素的特征表示,然后计算特征距离以建立边缘权重。给定一个构造的图,我们接下来提出了使用图形总变化(GTV)先验的凸优化问题。通过$ L_1 $图形Laplacian重新制定,我们将其解决方案在迭代过程中解释为图形低通滤波器并得出其频率响应。对于快速滤波器实现,我们使用兰斯佐斯近似实现了此响应。实验结果表明,在统计误差的情况下,我们的算法在PSNR中的表现优于最高3DB。

While deep learning (DL) architectures like convolutional neural networks (CNNs) have enabled effective solutions in image denoising, in general their implementations overly rely on training data, lack interpretability, and require tuning of a large parameter set. In this paper, we combine classical graph signal filtering with deep feature learning into a competitive hybrid design -- one that utilizes interpretable analytical low-pass graph filters and employs 80% fewer network parameters than state-of-the-art DL denoising scheme DnCNN. Specifically, to construct a suitable similarity graph for graph spectral filtering, we first adopt a CNN to learn feature representations per pixel, and then compute feature distances to establish edge weights. Given a constructed graph, we next formulate a convex optimization problem for denoising using a graph total variation (GTV) prior. Via a $l_1$ graph Laplacian reformulation, we interpret its solution in an iterative procedure as a graph low-pass filter and derive its frequency response. For fast filter implementation, we realize this response using a Lanczos approximation. Experimental results show that in the case of statistical mistmatch, our algorithm outperformed DnCNN by up to 3dB in PSNR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源