论文标题

大卫圆形同构,焊接,交配和可移动性的扩展

David extension of circle homeomorphisms, welding, mating, and removability

论文作者

Lyubich, Mikhail, Merenkov, Sergei, Mukherjee, Sabyasachi, Ntalampekos, Dimitrios

论文摘要

我们为圆圈同态构造,共轭两个动力学系统提供了大卫扩展结果,以便抛物线定期点转到抛物线周期点,但双曲线点也可以转到抛物面。我们尤其使用该结果来证明存在一类新的同构同构的存在,以建立明确的动态连接,以固定的反理性地图和亲吻反射组之间存在明确的动态联系,以显示朱利娅的保形可移动性,以表明朱利娅的几何学有限的多项量和极限的组合组成的小组,以使项链含量属于方面,以产生项链,以产生项链,以产生项链,以产生项链的小组式,并表现出。反射组,并给出新的证明多项式存在的新证明(在某些单价图的某些空间中的极端点)。

We provide a David extension result for circle homeomorphisms conjugating two dynamical systems such that parabolic periodic points go to parabolic periodic points, but hyperbolic points can go to parabolics as well. We use this result, in particular, to prove the existence of a new class of welding homeomorphisms, to establish an explicit dynamical connection between critically fixed anti-rational maps and kissing reflection groups, to show conformal removability of the Julia sets of geometrically finite polynomials and of the limit sets of necklace reflection groups, to produce matings of anti-polynomials and necklace reflection groups, and to give a new proof of the existence of Suffridge polynomials (extremal points in certain spaces of univalent maps).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源