论文标题
使用机器学习和光谱法测量电子温度并识别血浆脱离
Measuring the Electron Temperature and Identifying Plasma Detachment using Machine Learning and Spectroscopy
论文作者
论文摘要
已经实施了一种机器学习方法,以直接从Tokamak等离子体的发射光谱中测量电子温度。这种方法利用了在DIII-D Tokamak操作的数据集中训练的神经网络(NN)。该NN尤其擅长预测低温下的$ T_E $($ T_E <10 $ eV),其中NN表现出平均平均误差小于1 eV。经过培训可以检测到Tokamak分离器中的血浆分离,NN分类器能够以99%的精度(F $ _1 $ 0.96)以$ 10 \ $ 10 \ $ 10 \ thomson散射测量的速度正确地识别出99%精度(F $ _1 $ 0.96)的分离状态(f $ _1 $ 0.96)。通过检查使用碰撞辐射建模产生的一组4800理论光谱,该模型的性能是可以理解的,该模型还用于预测可见波长中低成本光谱仪查看氮的发射的性能。这些结果提供了原则上的证明,即可以使用机器学习利用的低成本光谱仪既可以用来提高融合设备上更昂贵的诊断性能,又可以独立地用作快速,准确的$ T_E $测量和分离分类器。
A machine learning approach has been implemented to measure the electron temperature directly from the emission spectra of a tokamak plasma. This approach utilized a neural network (NN) trained on a dataset of 1865 time slices from operation of the DIII-D tokamak using extreme ultraviolet / vacuum ultraviolet (EUV/VUV) emission spectroscopy matched with high-accuracy divertor Thomson scattering measurements of the electron temperature, $T_e$. This NN is shown to be particularly good at predicting $T_e$ at low temperatures ($T_e < 10$ eV) where the NN demonstrated a mean average error of less than 1 eV. Trained to detect plasma detachment in the tokamak divertor, a NN classifier was able to correctly identify detached states ($T_e<5$ eV) with a 99% accuracy (F$_1$ score of 0.96) at an acquisition rate $10\times$ faster than the Thomson scattering measurement. The performance of the model is understood by examining a set of 4800 theoretical spectra generated using collisional radiative modeling that was also used to predict the performance of a low-cost spectrometer viewing nitrogen emission in the visible wavelengths. These results provide a proof-of-principle that low-cost spectrometers leveraged with machine learning can be used both to boost the performance of more expensive diagnostics on fusion devices, and be used independently as a fast and accurate $T_e$ measurement and detachment classifier.