论文标题
旋转黑洞的全息复杂性
Holographic complexity of rotating black holes
论文作者
论文摘要
在“复杂性等于动作”和“复杂性等于体积”的框架内,我们研究了旋转黑洞的全息复杂性的特性。我们专注于一类奇数平等的黑洞,为此进行了相当大的简化。我们研究了形成的复杂性,发现了大型黑洞的形成复杂性与热力学体积之间的直接联系。我们还考虑了复杂性的增长率,发现在后期增长速度的速度是恒定的,但是劳埃德的界限通常受到侵犯。
Within the framework of the "complexity equals action" and "complexity equals volume" conjectures, we study the properties of holographic complexity for rotating black holes. We focus on a class of odd-dimensional equal-spinning black holes for which considerable simplification occurs. We study the complexity of formation, uncovering a direct connection between complexity of formation and thermodynamic volume for large black holes. We consider also the growth-rate of complexity, finding that at late-times the rate of growth approaches a constant, but that Lloyd's bound is generically violated.