论文标题

异国情调超新星多变量时间序列的异常检测

Anomaly Detection for Multivariate Time Series of Exotic Supernovae

论文作者

Villar, V. Ashley, Cranmer, Miles, Contardo, Gabriella, Ho, Shirley, Lin, Joshua Yao-Yu

论文摘要

超新星标志着恒星的爆炸性死亡,并用沉重的元素丰富了宇宙。未来的望远镜将每晚发现成千上万个新的超新星,这需要迅速提升天体物理有趣的事件以进行后续研究。理想情况下,这种异常检测管道将独立于我们当前的知识,并且对意外现象敏感。在这里,我们提出了一种无监督的方法,可以实时搜索异常时间序列,以获取瞬态,多变量和多个神经信号。我们使用基于RNN的变异自动编码器编码超新星时间序列和隔离林来搜索学习编码的空间中的异常事件。我们将此方法应用于12,159个超新星的模拟数据集,成功地发现了异常的超新星和具有灾难性不正确的红移测量的物体。这项工作是与在线数据流一起使用的超新星的第一个异常检测管道。

Supernovae mark the explosive deaths of stars and enrich the cosmos with heavy elements. Future telescopes will discover thousands of new supernovae nightly, creating a need to flag astrophysically interesting events rapidly for followup study. Ideally, such an anomaly detection pipeline would be independent of our current knowledge and be sensitive to unexpected phenomena. Here we present an unsupervised method to search for anomalous time series in real time for transient, multivariate, and aperiodic signals. We use a RNN-based variational autoencoder to encode supernova time series and an isolation forest to search for anomalous events in the learned encoded space. We apply this method to a simulated dataset of 12,159 supernovae, successfully discovering anomalous supernovae and objects with catastrophically incorrect redshift measurements. This work is the first anomaly detection pipeline for supernovae which works with online datastreams.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源