论文标题
将定期地图分解为Dehn Twist
Factoring periodic maps into Dehn twists
论文作者
论文摘要
令$ \ text {mod}(s_g)$为封闭的定向表面$ s_g $ g \ geq 1 $的映射类组。在本文中,我们开发了各种方法,将定期映射类分解为dehn Twist,直到共轭。作为应用程序,我们开发了将dehn Twist的某些根源的方法作为Dehn Twist中的单词。我们还将展示存在订单$ 4G $和$ 4G+2 $的定期地图的结合物,其产品是伪-Anosov。
Let $\text{Mod}(S_g)$ be the mapping class group of the closed orientable surface $S_g$ of genus $g \geq 1$. In this paper, we develop various methods for factoring periodic mapping classes into Dehn twists, up to conjugacy. As applications, we develop methods for factoring certain roots of Dehn twists as words in Dehn twists. We will also show the existence of conjugates of periodic maps of order $4g$ and $4g+2$, for $g\geq 2$, whose product is pseudo-Anosov.