论文标题

全球不变的流形描述了耗散系统中的过渡和逃生动态

Global invariant manifolds delineating transition and escape dynamics in dissipative systems

论文作者

Zhong, Jun, Ross, Shane D.

论文摘要

不变流形在组织全球动力学行为中起着重要作用。例如,发现在多孔保守的系统中,势能井是通过索引-1鞍座连接的,潜在井之间的运动受鞍座周期轨道的不变歧管的控制。在两个程度的自由系统中,这种不变的流形出现为圆柱形导管,称为过渡管。在这项研究中,我们将不变歧管的概念应用于不仅保守系统,而且还要解决相应的适当边界值问题,研究潜在井之间的过渡。所考虑的示例系统是浅拱的快照屈曲的两种模式。我们定义了过渡区域,$ \ MATHCAL {T} _H $,作为给定初始汉密尔顿能量$ H $的一组初始条件,该轨迹可以从一个潜力中逃脱到另一个潜力,在示例系统中,系统系统对应于结构的快照。数值结果表明,在保守的系统中,过渡区域的边界,$ \ partial \ Mathcal {t} _h $,是一个气缸,而在耗散系统中,$ \ partial \ Mathcal {T} _H $是Ellipsoid。从不变流形的角度来看,目前的研究中开发的算法为研究逃生和过渡动态提供了强大的理论计算框架。

Invariant manifolds play an important role in organizing global dynamical behaviors. For example, it is found that in multi-well conservative systems where the potential energy wells are connected by index-1 saddles, the motion between potential wells is governed by the invariant manifolds of a periodic orbit around the saddle. In two degree of freedom systems, such invariant manifolds appear as cylindrical conduits which are referred to as transition tubes. In this study, we apply the concept of invariant manifolds to study the transition between potential wells in not only conservative systems, but more realistic dissipative systems, by solving respective proper boundary-value problems. The example system considered is a two mode model of the snap-through buckling of a shallow arch. We define the transition region, $\mathcal{T}_h$, as a set of initial conditions of a given initial Hamiltonian energy $h$ with which the trajectories can escape from one potential well to another, which in the example system corresponds to snap-through buckling of a structure. The numerical results reveal that in the conservative system the boundary of the transition region, $\partial \mathcal{T}_h$, is a cylinder, while in the dissipative system, $\partial \mathcal{T}_h$ is an ellipsoid. The algorithms developed in the current research from the perspective of invariant manifold provides a robust theoretical-computational framework to study escape and transition dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源