论文标题

基于佛罗伦萨矩形

Asymptotically Optimal and Near-optimal Aperiodic Quasi-Complementary Sequence Sets Based on Florentine Rectangles

论文作者

Adhikary, Avik Ranjan, Feng, Yanghe, Zhou, Zhengchun, Fan, Pingzhi

论文摘要

准融合序列集(QCSS)可以看作是完整互补代码(CCC)的广义版本,该版本使多载波通信系统可以支持更多用户。这项工作的贡献是两个方面。首先,我们提出了佛罗伦萨矩形的系统构造。其次,我们使用佛罗伦萨矩形提出了几套CCC和QCS。 CCCS和QCSS由$ \ Mathbb {z} _n $构建,其中$ n \ geq2 $是任何整数。任何两个构建的CCC的互相关幅度均由$ n $界定。通过将提出的CCC结合起来,我们提出了渐近最佳和近乎最佳的QCSS与新参数。这解决了一个长期存在的问题,即在$ \ mathbb {z} _n $上设计渐近最佳的大道QCSS,其中$ n $是任何整数。

Quasi-complementary sequence sets (QCSSs) can be seen as a generalized version of complete complementary codes (CCCs), which enables multicarrier communication systems to support more users. The contribution of this work is two-fold. First, we propose a systematic construction of Florentine rectangles. Secondly, we propose several sets of CCCs and QCSS, using Florentine rectangles. The CCCs and QCSS are constructed over $\mathbb{Z}_N$, where $N\geq2$ is any integer. The cross-correlation magnitude of any two of the constructed CCCs is upper bounded by $N$. By combining the proposed CCCs, we propose asymptotically optimal and near-optimal QCSSs with new parameters. This solves a long-standing problem, of designing asymptotically optimal aperiodic QCSS over $\mathbb{Z}_N$, where $N$ is any integer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源