论文标题

带有多个随机射击的混合动力培养皿网的状态空间构建

State-space construction of Hybrid Petri nets with multiple stochastic firings

论文作者

Hüls, Jannik, Pilch, Carina, Schinke, Patricia, Niehaus, Henner, Delicaris, Joanna, Remke, Anne

论文摘要

杂交培养皿已扩展到包括在随机分布的时间后发射的一般过渡。使用单一的一般单次转换,随时间的状态空间和演变可以表示为参数位置树或随机时间图。最近的工作表明,两种表示都可以组合在一起,然后允许多个随机射击。这项工作提出了一种用于构建具有多个通用过渡点火的参数位置树的算法,并显示了如何使用多维集成计算其瞬时概率分布。我们讨论了间隔算术的(分数)优势和计算整合区域的几何方法。此外,我们还提供有关如何直接在这些间隔或凸多型上或转换为标准简单后的蒙特卡洛集成的详细信息。关于电池回复系统的案例研究显示了该方法的可行性,并讨论了不同集成方法的性能。

Hybrid Petri nets have been extended to include general transitions that fire after a randomly distributed amount of time. With a single general one-shot transition the state space and evolution over time can be represented either as a Parametric Location Tree or as a Stochastic Time Diagram. Recent work has shown that both representations can be combined and then allow multiple stochastic firings. This work presents an algorithm for building the Parametric Location Tree with multiple general transition firings and shows how its transient probability distribution can be computed using multi-dimensional integration. We discuss the (dis-)advantages of an interval arithmetic and a geometric approach to compute the areas of integration. Furthermore, we provide details on how to perform a Monte Carlo integration either directly on these intervals or convex polytopes, or after transformation to standard simplices. A case study on a battery-backup system shows the feasibility of the approach and discusses the performance of the different integration approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源