论文标题
强烈干扰指标的扭曲效果
Warping effects in strongly perturbed metrics
论文作者
论文摘要
几年前设计的一种技术允许在强大的扰动制度中研究理论。这转化为梯度扩展,在领先顺序上可以在总体相对论中恢复BKL解决方案。我们在球形对称情况下精确地求解了领先的爱因斯坦方程,假设在时间依赖性扰动的效果下进行施瓦茨柴尔德指标,并且我们表明,当这种情况下,当这种情况下,当这种情况下的4个速度乘以指数的扭曲因子时,则在正确地使用了指数。这个因素总是大于一个。对于简单的情况,我们将提供此因子的封闭式解决方案。还给出了一些数值示例。
A technique devised some years ago permits to study a theory in a regime of strong perturbations. This translates into a gradient expansion that, at the leading order, can recover the BKL solution in general relativity. We solve exactly the leading order Einstein equations in a spherical symmetric case, assuming a Schwarzschild metric under the effect of a time-dependent perturbation, and we show that the 4-velocity in such a case is multiplied by an exponential warp factor when the perturbation is properly applied. This factor is always greater than one. We will give a closed form solution of this factor for a simple case. Some numerical examples are also given.