论文标题

RICCI范围较低的Kahler歧管的度量刚度和几乎最大的体积

Metric rigidity of Kahler manifolds with lower Ricci bounds and almost maximal volume

论文作者

Datar, Ved, Seshadri, Harish, Song, Jian

论文摘要

在此简短说明中,我们证明了具有较低RICCI曲率结合和几乎最大体积的Kahler歧管是Gromov-Hausdorff,靠近带有Fubini-Study Metric的投射空间。这是通过将Kewei Zhang和Yuchen Liu的最新结果结合到此类Kahler歧管的全体形态刚性的最新结果与Tian-Wang的结构定理几乎是爱因斯坦歧管的。这可以被视为在几乎最大体积的riemannian歧管形状上冷水时结果的复杂类似物

In this short note we prove that a Kahler manifold with lower Ricci curvature bound and almost maximal volume is Gromov-Hausdorff close to the projective space with the Fubini-Study metric. This is done by combining the recent results of Kewei Zhang and Yuchen Liu on holomorphic rigidity of such Kahler manifolds with the structure theorem of Tian-Wang for almost Einstein manifolds. This can be regarded as the complex analog of the result on Colding on the shape of Riemannian manifolds with almost maximal volume

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源