论文标题
关于高维固体托里的自身形态
On automorphisms of high-dimensional solid tori
论文作者
论文摘要
我们研究了$ s^1 \ times d^{2n-1} $的差异组的同质群中的无限一代,价格为$ 2N \ geq 6 $,最高为$ n-2 $。我们的分析依赖于理解该歧管稳定自我稳定的某些空间的分类空间的分类空间的线性化图的同质纤维,以及$π_1(s^1)$ $π_1(s^1)的Hermitian $ K $的形式的形式。我们还表明,这些同质群体合理地消失了。
We study the infinite generation in the homotopy groups of the group of diffeomorphisms of $S^1 \times D^{2n-1}$, for $2n \geq 6$, in a range of degrees up to $n-2$. Our analysis relies on understanding the homotopy fibre of a linearisation map from the plus-construction of the classifying space of certain space of self-embeddings of stabilisations of this manifold to a form of Hermitian $K$-theory of the integral group ring of $π_1(S^1)$. We also show that these homotopy groups vanish rationally.