论文标题

Coxeter组的Poincaré系列双固定代表

Poincaré series of double coset representatives of Coxeter groups

论文作者

Chinello, Gianmarco

论文摘要

令$(W,S)$为有限排名的Coxeter系统,让$ J,K \ subset S $。我们研究了$ w $ $(w_j,w_k)$的最小长度代表的庞加莱系列的合理性:$ w $:我们得出的结论是,这主要取决于庞加尔派康卡雷(Poincaré)的合理性。对于仿射韦伊尔组,我们证明所有这些系列都是理性的,我们提供了一些明确的例子。

Let $(W,S)$ be a Coxeter system of finite rank and let $J,K\subset S$. We study the rationality of the Poincaré series of the set of representatives of minimal length of $(W_J,W_K)$-double cosets of $W$: we conclude that it depends mostly on the rationality of the Poincaré series of the normalizers of finite parabolic subgroups of $W$. For affine Weyl groups, we prove that all these series are rational and we give some explicit examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源