论文标题
MINVO基础:查找具有最小体积的单纯性封闭多项式曲线
MINVO Basis: Finding Simplexes with Minimum Volume Enclosing Polynomial Curves
论文作者
论文摘要
本文研究了多项式基础,该基础生成了最小的$ n $ -simplex,它封闭了给定的$ n^{\ text {th}} $ - $ \ mathbb {r}^n $中的多项式曲线。尽管Bernstein和B-Spline多项式碱基为此问题提供了可行的解决方案,但这些基础获得的单纯胶不是最小的,这会导致许多CAD(计算机辅助设计)应用中过度保守的结果。我们首先证明,解决此问题的多项式基础(MINVO基础)也解决了$ n^\ text {th} $ - 级多项式曲线,其中最大的凸面船体包含在给定的$ n $ simplex中。然后,我们提出了一种独立于$ n $ -simplex或$ n^{\ text {th}} $多项式曲线的公式。通过使用方案总和(SOS)编程,分支和绑定以及矩放松,我们为任何$ n \ in \ Mathbb {n} $中的任何$ n \获得高质量的可行解决方案,并证明(数值)全球最佳性,$ n = 1,2,3 $ and(数值)本地最佳选择$ n = 4 $。 $ n = 3 $获得的结果表明,对于任何给定的$ 3^{\ text {rd}} $ - 度$ \ mathbb {r}^3 $中的多项式曲线,Minvo的基础能够获得一个封闭的单纯形,其体积比$ 2.36 $和$ 254.9 $的$ 254.9 $所获得的单纯化均可获得贝尔特尔和贝尔特尔(Bern)和贝尔特(Bern)的基础。当$ n = 7 $时,这些比率分别增加到$ 902.7 $和$ 2.997 \ cdot10^{21} $。
This paper studies the polynomial basis that generates the smallest $n$-simplex enclosing a given $n^{\text{th}}$-degree polynomial curve in $\mathbb{R}^n$. Although the Bernstein and B-Spline polynomial bases provide feasible solutions to this problem, the simplexes obtained by these bases are not the smallest possible, which leads to overly conservative results in many CAD (computer-aided design) applications. We first prove that the polynomial basis that solves this problem (MINVO basis) also solves for the $n^\text{th}$-degree polynomial curve with largest convex hull enclosed in a given $n$-simplex. Then, we present a formulation that is independent of the $n$-simplex or $n^{\text{th}}$-degree polynomial curve given. By using Sum-Of-Squares (SOS) programming, branch and bound, and moment relaxations, we obtain high-quality feasible solutions for any $n\in\mathbb{N}$, and prove (numerical) global optimality for $n=1,2,3$ and (numerical) local optimality for $n=4$. The results obtained for $n=3$ show that, for any given $3^{\text{rd}}$-degree polynomial curve in $\mathbb{R}^3$, the MINVO basis is able to obtain an enclosing simplex whose volume is $2.36$ and $254.9$ times smaller than the ones obtained by the Bernstein and B-Spline bases, respectively. When $n=7$, these ratios increase to $902.7$ and $2.997\cdot10^{21}$, respectively.