论文标题

通过比蒂序列扩展整数

Expansions of the Group of Integers by Beatty Sequences

论文作者

Günaydın, Ayhan, Özsahakyan, Melissa

论文摘要

我们研究模型理论结构$(\ z,+,p_r)$,其中$ r> 1 $是一个不合理的编号,$ p_r $的元素是$ \ floor {nr} $的$ \ floes {nr} $,对于某些$ n \ in \ z \ z \ setMinus \ {0 \} $。我们公理地对此结构进行了证明,并证明了量词消除结果。结果,除非有限,否则我们得到可确定的子集并不稀疏。我们还证明,没有扩展$(\ z,+)$的结构的减少。

We study the model theoretic structure $(\Z,+,P_r)$ where $r>1$ is an irrational number and the elements of $P_r$ are of the form $\floor{nr}$ for some $n\in\Z\setminus\{0\}$. We axiomatize of this structure and prove a quantifier elimination result. As a consequence, we get that definable subsets are not sparse unless they are finite. We also prove that there are no reducts of this structure expanding $(\Z,+)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源