论文标题
非线性旋转黑洞,非线性麦克斯韦$ f({\ cal r})$重力
New rotating black holes in non-linear Maxwell $f({\cal R})$ gravity
论文作者
论文摘要
我们研究了$ f({\ cal r})$重力框架中的静态和旋转带电的球形对称解,从而使电磁扇形还可以脱离线性。为电磁拉格朗日应用方便,双重描述,并用作示例Square-root $ f({\ cal r})$校正,我们可以通过分析涉及的字段方程来分析。获得的解决方案属于两个分支,一个分支包含一般相对性的Kerr-Newman解作为特定极限,而一种纯粹是由引力修饰引起的。新颖的黑洞解决方案具有真正的中央奇异性,它隐藏在地平线后面,但是对于特定的参数区域而言,它变成了裸露的区域。此外,我们研究了溶液的热力学特性,例如温度,能量,熵,热容量和吉布斯自由能。我们提取熵和准能量阳性条件,表明负温度,超速,黑洞是可能的,并且我们表明所获得的溶液在适当的模型参数区域对热力学稳定。
We investigate static and rotating charged spherically symmetric solutions in the framework of $f({\cal R})$ gravity, allowing additionally the electromagnetic sector to depart from linearity. Applying a convenient, dual description for the electromagnetic Lagrangian, and using as an example the square-root $f({\cal R})$ correction, we solve analytically the involved field equations. The obtained solutions belong to two branches, one that contains the Kerr-Newman solution of general relativity as a particular limit and one that arises purely from the gravitational modification. The novel black hole solution has a true central singularity which is hidden behind a horizon, however for particular parameter regions it becomes a naked one. Furthermore, we investigate the thermodynamical properties of the solutions, such as the temperature, energy, entropy, heat capacity and Gibbs free energy. We extract the entropy and quasilocal energy positivity conditions, we show that negative-temperature, ultracold, black holes are possible, and we show that the obtained solutions are thermodynamically stable for suitable model parameter regions.