论文标题

关于衍生物,Riesz转换和Sobolev空间用于傅立叶贝塞尔的扩展

On derivatives, Riesz transforms and Sobolev spaces for Fourier-Bessel expansions

论文作者

Langowski, Bartosz, Nowak, Adam

论文摘要

我们研究了与离散傅里叶贝塞尔扩展相关的适当选择的衍生物问题。我们介绍了一种新的所谓基本测量傅里贝斯设置,其中相关的衍生物仅仅是普通的导数。然后,我们在这种情况下研究Riesz变换和Sobolev空间。我们的主要结果是Riesz变换的$ L^P $结合度(即使在多维情况下)以及Sobolev和傅立叶贝塞尔潜在空间之间的同构。此外,在本文中,我们收集了有关文献早期考虑的另外两个紧密相关的傅里​​叶贝塞尔情况的各种评论。我们认为,我们的观察结果对傅立叶贝塞尔扩张的分析有了一些新的启示。

We study the problem of an appropriate choice of derivatives associated with discrete Fourier-Bessel expansions. We introduce a new so-called essential measure Fourier-Bessel setting, where the relevant derivative is simply the ordinary derivative. Then we investigate Riesz transforms and Sobolev spaces in this context. Our main results are $L^p$-boundedness of the Riesz transforms (even in a multi-dimensional situation) and an isomorphism between the Sobolev and Fourier-Bessel potential spaces. Moreover, throughout the paper we collect various comments concerning two other closely related Fourier-Bessel situations that were considered earlier in the literature. We believe that our observations shed some new light on analysis of Fourier-Bessel expansions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源