论文标题
查找和枚举最佳子图的复杂性表示空间相关性
The complexity of finding and enumerating optimal subgraphs to represent spatial correlation
论文作者
论文摘要
在许多领域,包括流行病学和社会科学在内的许多领域都至关重要。 Lee,Meeks和Pettersson(Stat。Comput。2021)最近证明,可以通过对代表空间相关性的图表进行修改来改善Areal单位计数数据的推断。具体而言,它们删除了从地理区域之间边界共享的平面图的边缘,以最大化特定的目标函数。在本文中,我们解决了相关图优化问题的计算复杂性。我们证明,除非p = np,否则不能在多项式时间内解决此问题。我们进一步显示出对两个问题的更简单变体的棘手性。我们使用两个参数化算法遵循这些结果,这些算法准确解决了问题。这两者都不仅解决了决策问题,而且还以多项式时间的预定,延迟和后估计时间列举所有解决方案,并在相应的受限设置中列举。对于这个问题,有效的枚举允许在建模中使用空间相关性的不确定性。第一个枚举算法在树分解上利用动态编程,如果树宽和最高程度都有界限,则具有多项式时间的预定和线性延迟。第二种算法仅限于最高度的问题实例,这是平面表面三角剖分可能引起的,但是当可以将最大的边缘数以作为参数为参数时,可以输出所有具有FPT预计时间和线性延迟的解决方案。
Understanding spatial correlation is vital in many fields including epidemiology and social science. Lee, Meeks and Pettersson (Stat. Comput. 2021) recently demonstrated that improved inference for areal unit count data can be achieved by carrying out modifications to a graph representing spatial correlations; specifically, they delete edges of the planar graph derived from border-sharing between geographic regions in order to maximise a specific objective function. In this paper we address the computational complexity of the associated graph optimisation problem. We demonstrate that this problem cannot be solved in polynomial time unless P = NP; we further show intractability for two simpler variants of the problem. We follow these results with two parameterised algorithms that exactly solve the problem. Both of these solve not only the decision problem, but also enumerate all solutions with polynomial time precalculation, delay, and postcalculation time in respective restricted settings. For this problem, efficient enumeration allows the uncertainty in the spatial correlation to be utilised in the modelling. The first enumeration algorithm utilises dynamic programming on a tree decomposition, and has polynomial time precalculation and linear delay if both the treewidth and maximum degree are bounded. The second algorithm is restricted to problem instances with maximum degree three, as may arise from triangulations of planar surfaces, but can output all solutions with FPT precalculation time and linear delay when the maximum number of edges that can be removed is taken as the parameter.