论文标题

高斯整数中的矩阵丰富

Abundance of Matrices In Gaussian Integers

论文作者

Chakraborty, Aninda

论文摘要

在[HLS]中,N。Hindman,I。领导者和D. Strauss证明了具有理性条目的矩阵的丰富。在本文中,我们为高斯整数环证明了这一点。我们显示了当矩阵带有来自\ Mathbb {q} \ left [i \ right]条目的条目时的结果。主要障碍是在复数领域,不存在线性秩序关系。我们以一种机智的方式克服了这一点。

In [HLS], N. Hindman, I. Leader and D. Strauss proved the abundance for a matrix with rational entries. In this paper we proved it for the ring of Gaussian integers. We showed the result when the matrix is taken with entries from \mathbb{Q}\left[i\right]. The main obstacle is in the field of complex numbers, no linear order relation exists. We overcome that in a tactful way.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源