论文标题

紧凑的嵌入定理和狮子型引理分数orlicz-sobolev空间

Compact embedding theorems and a Lions' type Lemma for fractional Orlicz-Sobolev spaces

论文作者

Silva, Edcarlos D., Carvalho, Marcos L. M., de Albuquerque, José Carlos, Bahrouni, Sabri

论文摘要

在本文中,我们关注有关分数Orlicz-Sobolev空间的一些抽象结果。确切地说,我们确保加权分数Orlicz-Sobolev空间的紧凑性嵌入到Orlicz空间中,前提是重量不受限制。我们还通过引入新技术来克服缺乏合适的插值定律,从而为分数Orlicz-Sobolev空间获得狮子的“消失”引理版本。最后,作为抽象结果的乘积,我们使用尼哈里歧管上的最小化方法来证明一类非线性schrödinger方程的基态解决方案的存在,同时考虑了无界或有限的潜力。

In this paper we are concerned with some abstract results regarding to fractional Orlicz-Sobolev spaces. Precisely, we ensure the compactness embedding for the weighted fractional Orlicz-Sobolev space into the Orlicz spaces, provided the weight is unbounded. We also obtain a version of Lions' "vanishing" Lemma for fractional Orlicz-Sobolev spaces, by introducing new techniques to overcome the lack of a suitable interpolation law. Finally, as a product of the abstract results, we use a minimization method over the Nehari manifold to prove the existence of ground state solutions for a class of nonlinear Schrödinger equations, taking into account unbounded or bounded potentials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源