论文标题
在Bloch-Kato Selmer群体和伊瓦沙瓦理论上
On Bloch-Kato Selmer groups and Iwasawa theory of $p$-adic Galois representations
论文作者
论文摘要
由于格林伯格(R. Greenberg)引起的结果在数字字段上的椭圆曲线群的基数与Selmer群体的Pontryagin duals的特征功率系列之间的相关性与循环组合$ \ MATHBB ZP $ expentensions在良好的普通普莱姆$ p $上。我们将格林伯格的结果扩展到更通用的$ p $ adic-adic galois表示形式,其中包括与$ p $ p $ p $的模块化形式相关的大型子类,$ p \ nmid n $。
A result due to R. Greenberg gives a relation between the cardinality of Selmer groups of elliptic curves over number fields and the characteristic power series of Pontryagin duals of Selmer groups over cyclotomic $\mathbb Z_p$-extensions at good ordinary primes $p$. We extend Greenberg's result to more general $p$-adic Galois representations, including a large subclass of those attached to $p$-ordinary modular forms of level $Γ_0(N)$ with $p\nmid N$.