论文标题
封闭的发电机和基础
Generators and Bases for Monadic Closures
论文作者
论文摘要
众所周知,每种普通语言都承认一个独特的确定性受体。建立非确定性受体的类似结果更加困难,但实际上很重要。为了解决这个问题,已经确定了许多非确定性自动机的子类,所有这些都承认规范最小的代表。在以前的工作中,我们已经表明,可以通过两个步骤进行绝对恢复此类代表。首先,一个人通过在单月上使用额外的代数结构结束最小的山地,构造了最小的双子骨接受给定的常规语言。其次,一个人确定了双子骨的代数部分的规范发电机,以得出一个同等的山地,并具有副作用。在本文中,我们进一步发展了这两个步骤的基础理论。一方面,我们表明,可以通过在适当的亚物体类别上应用单一单元来实现从最小山地的最小双重骨。另一方面,我们探索了单元上代数的发电机和基础的抽象理论。
It is well-known that every regular language admits a unique minimal deterministic acceptor. Establishing an analogous result for non-deterministic acceptors is significantly more difficult, but nonetheless of great practical importance. To tackle this issue, a number of sub-classes of non-deterministic automata have been identified, all admitting canonical minimal representatives. In previous work, we have shown that such representatives can be recovered categorically in two steps. First, one constructs the minimal bialgebra accepting a given regular language, by closing the minimal coalgebra with additional algebraic structure over a monad. Second, one identifies canonical generators for the algebraic part of the bialgebra, to derive an equivalent coalgebra with side effects in a monad. In this paper, we further develop the general theory underlying these two steps. On the one hand, we show that deriving a minimal bialgebra from a minimal coalgebra can be realized by applying a monad on an appropriate category of subobjects. On the other hand, we explore the abstract theory of generators and bases for algebras over a monad.