论文标题
解码冠状质量弹出的爆发前磁场构型
Decoding the Pre-Eruptive Magnetic Field Configurations of Coronal Mass Ejections
论文作者
论文摘要
对冠状质量弹出(CME)的爆发前磁场构型的性质有清晰的理解是要理解和最终预测太阳喷发的。只有两个但看似不同的磁性构型被认为是可行的。也就是说,剪切的磁场(SMA)和磁通绳(MFR)。它们可以通过三种物理机制(通量出现,通量取消,螺旋性凝结)形成。然而,CME罪魁祸首是SMA还是MFR,已经进行了三十年的激烈争论。我们组建了一个国际太空科学研究所(ISSI)团队,以解决和解决此问题并在此处报告结果。我们回顾了跨建模和观测值,确定开放和封闭的问题,汇编SMA和MFR可观察的列表,以根据观察和概述研究活动进行测试,以缩小我们当前理解的差距。我们提出,多观测点多热冠状观测和多高度向量磁场测量的组合是最佳解决问题的最佳方法。我们使用MHD模拟和合成冠状动脉图像演示了该方法。 我们的主要结论是,从SMA和MFRS角度来看,爆发前构型的差异似乎是人为的。如果在杂种状态下存在杂种状态,该观测和建模都可以保持一致,从而连续地从SMA演变为MFR。因此,给定构型的“主要”性质将在很大程度上取决于其进化阶段(类似于SMA的早期,像MFR一样,在喷发附近)。
A clear understanding of the nature of the pre-eruptive magnetic field configurations of Coronal Mass Ejections (CMEs) is required for understanding and eventually predicting solar eruptions. Only two, but seemingly disparate, magnetic configurations are considered viable; namely, sheared magnetic arcades (SMA) and magnetic flux ropes (MFR). They can form via three physical mechanisms (flux emergence, flux cancellation, helicity condensation) . Whether the CME culprit is an SMA or an MFR, however, has been strongly debated for thirty years. We formed an International Space Science Institute (ISSI) team to address and resolve this issue and report the outcome here. We review the status of the field across modeling and observations, identify the open and closed issues, compile lists of SMA and MFR observables to be tested against observations and outline research activities to close the gaps in our current understanding. We propose that the combination of multi-viewpoint multi-thermal coronal observations and multi-height vector magnetic field measurements is the optimal approach for resolving the issue conclusively. We demonstrate the approach using MHD simulations and synthetic coronal images. Our key conclusion is that the differentiation of pre-eruptive configurations in terms of SMAs and MFRs seems artificial. Both observations and modeling can be made consistent if the pre-eruptive configuration exists in a hybrid state that is continuously evolving from an SMA to an MFR. Thus, the 'dominant' nature of a given configuration will largely depend on its evolutionary stage (SMA-like early-on, MFR-like near the eruption).