论文标题

新技术和细颗粒硬度,用于动态近乎渐进的跨度

New Techniques and Fine-Grained Hardness for Dynamic Near-Additive Spanners

论文作者

Bergamaschi, Thiago, Henzinger, Monika, Gutenberg, Maximilian Probst, Williams, Virginia Vassilevska, Wein, Nicole

论文摘要

在图中维护和更新最短的路径信息是许多应用程序的基本问题。由于密集图上的计算可能非常昂贵,而且最好在给定图的稀疏骨架上执行大致保留最短路径信息的计算。跨越和仿真器实现了这个目的。本文为稀疏扳手和模拟器维护提供了快速的动态算法,并提供了来自细粒复杂性的证据,表明这些算法很紧。 在流行的OMV猜想下,我们表明,没有任何降低或增量算法可以维持$ n^{1+o(1)} $ edge(纯粹添加剂)$+n^δ$ - emulator,用于任何$Δ<1/2 $,并带有任意多项式的预读时间和总更新时间和总更新时间$ m^$ m^1+o(1} 1+o(1)另外,在组合$ k $ clique假设下,任何完全动态的组合算法都保持$ n^{1+o(1)} $ edge $(1+ε,n^{o(1)} $ - 跨度或仿真器或模拟器必须具有预启动时间$ mn^^{1- {1-} $(1-} $(1-} $) $ m^{1-o(1)} $。我们的两个条件下限都很紧。 由于上述完全动态的下限仅适用于组合算法,因此我们还开发了一种代数跨度算法,该算法比$ m^{1-o(1)} $更新时间更新时间。对于任何常数$ε\ in(0,1] $,都有一种完全动态的算法,其中WHP维护$ n^{1+O(1+o(1)$ edge $(1+ε,n^{o(n^{o(1))$ - spanner。 我们的新代数技术和跨度算法使我们还可以获得(1)使用更新和路径查询时间$ O(n^{1.9})$的全对最短路径(APSP)的新的全动态算法; (2)具有更新时间$ O(n^{1.529})$的完全动态$(1+ε)$ - 近似APSP算法; (3)一种完全动态的算法,以接近$ 2 $ 2 $的steiner树维护。

Maintaining and updating shortest paths information in a graph is a fundamental problem with many applications. As computations on dense graphs can be prohibitively expensive, and it is preferable to perform the computations on a sparse skeleton of the given graph that roughly preserves the shortest paths information. Spanners and emulators serve this purpose. This paper develops fast dynamic algorithms for sparse spanner and emulator maintenance and provides evidence from fine-grained complexity that these algorithms are tight. Under the popular OMv conjecture, we show that there can be no decremental or incremental algorithm that maintains an $n^{1+o(1)}$ edge (purely additive) $+n^δ$-emulator for any $δ<1/2$ with arbitrary polynomial preprocessing time and total update time $m^{1+o(1)}$. Also, under the Combinatorial $k$-Clique hypothesis, any fully dynamic combinatorial algorithm that maintains an $n^{1+o(1)}$ edge $(1+ε,n^{o(1)})$-spanner or emulator must either have preprocessing time $mn^{1-o(1)}$ or amortized update time $m^{1-o(1)}$. Both of our conditional lower bounds are tight. As the above fully dynamic lower bound only applies to combinatorial algorithms, we also develop an algebraic spanner algorithm that improves over the $m^{1-o(1)}$ update time for dense graphs. For any constant $ε\in (0,1]$, there is a fully dynamic algorithm with worst-case update time $O(n^{1.529})$ that whp maintains an $n^{1+o(1)}$ edge $(1+ε,n^{o(1)})$-spanner. Our new algebraic techniques and spanner algorithms allow us to also obtain (1) a new fully dynamic algorithm for All-Pairs Shortest Paths (APSP) with update and path query time $O(n^{1.9})$; (2) a fully dynamic $(1+ε)$-approximate APSP algorithm with update time $O(n^{1.529})$; (3) a fully dynamic algorithm for near-$2$-approximate Steiner tree maintenance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源