论文标题

双向色散流体动力学中的孤子气

Soliton gas in bidirectional dispersive hydrodynamics

论文作者

Congy, Thibault, El, Gennady, Roberti, Giacomo

论文摘要

孤子气体的理论先前是针对单向整合的分散流体动力学开发的,其中孤子气体的特性取决于孤子之间的超弹性成对相互作用。在本文中,我们将这一理论扩展到双向整合的欧拉系统中的孤子气体,在这些系统中,孤子的正面和超车碰撞都发生。我们区分两种定性类型的双向孤子气体:各向同性气体,其中伴随正面和超车的孤子碰撞的位置移动的位置具有相同的符号,而各向异性气体则具有相反的迹象,在该位置转移的位置变化。我们为两种双向孤子气体构建动力学方程,并解决了两个“单色”孤子束的碰撞,这些镜头由大约相同振幅和速度的孤子组成。构建了由平均流的接触不连续性分离的不同统一状态组成的动力学方程的相应弱解。考虑到非线性schrödinger(NLS)方程和谐振NLS方程的双向欧拉孤子气体的具体实例。谐振NLS Soliton气体的动力学方程与Kaup-Boussinesq方程描述的浅水双向孤子气体相当。双向孤子气体的冲击管利曼问题的分析结果与直接数值模拟非常吻合。

The theory of soliton gas had been previously developed for unidirectional integrable dispersive hydrodynamics in which the soliton gas properties are determined by the overtaking elastic pairwise interactions between solitons. In this paper, we extend this theory to soliton gases in bidirectional integrable Eulerian systems where both head-on and overtaking collisions of solitons take place. We distinguish between two qualitatively different types of bidirectional soliton gases: isotropic gases, in which the position shifts accompanying the head-on and overtaking soliton collisions have the same sign, and anisotropic gases, in which the position shifts for head-on and overtaking collisions have opposite signs. We construct kinetic equations for both types of bidirectional soliton gases and solve the respective shock-tube problems for the collision of two "monochromatic" soliton beams consisting of solitons of approximately the same amplitude and velocity. The corresponding weak solutions of the kinetic equations consisting of differing uniform states separated by contact discontinuities for the mean flow are constructed. Concrete examples of bidirectional Eulerian soliton gases for the defocusing nonlinear Schrödinger (NLS) equation and the resonant NLS equation are considered. The kinetic equation of the resonant NLS soliton gas is shown to be equivalent to that of the shallow-water bidirectional soliton gas described by the Kaup-Boussinesq equations. The analytical results for shock-tube Riemann problems for bidirectional soliton gases are shown to be in excellent agreement with direct numerical simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源