论文标题
电压控制的节能域壁突触在存在热噪声和边缘粗糙度的情况下,具有随机分布的随机分布
Voltage Controlled Energy Efficient Domain Wall Synapses with Stochastic Distribution of Quantized Weights in the Presence of Thermal Noise and Edge Roughness
论文作者
论文摘要
我们提出了在压电底物上垂直磁化纳米级赛马赛中域壁(DW)的能源有效应变控制,该压电底物可以在神经形态计算平台中实现多态突触。结合SOT从重金属层流到流动的电流,通过在压电上施加电压来产生应变。这样的应变机械地转移到赛道上,并调节垂直磁各向异性(PMA)。当应用不同的电压(即生成不同的应变)时,它可以将DW转换为同一电流的不同距离,从而实现不同的突触重量。我们已经使用微磁模拟表明,可以在赛马场中实现5状态和3状态突触,该赛道以自然边缘粗糙度和室温热噪声进行建模。这种应变控制的突触具有少数FJ的能源消耗,因此对于实施节能量化的神经网络可能非常有吸引力,最近已显示出来,该网络可实现与完整精确神经网络的接近等效分类精度。
We propose energy efficient strain control of domain wall (DW) in a perpendicularly magnetized nanoscale racetrack on a piezoelectric substrate that can implement multi state synapse to be utilized in neuromorphic computing platforms. In conjunction with SOT from to a current flowing in the heavy metal layer, strain is generated by applying a voltage across the piezoelectric. Such a strain is mechanically transferred to the racetrack and modulates the Perpendicular Magnetic Anisotropy (PMA). When different voltages are applied (i.e. different strains are generated), it can translate the DW to different distances for the same current which implements different synaptic weights. We have shown using micromagnetic simulations that 5-state and 3-state synapse can be implemented in a racetrack that is modeled with natural edge roughness and room temperature thermal noise. Such strain-controlled synapse has an energy consumption of few fJs and could thus be very attractive to implement energy-efficient quantized neural networks, which has been shown recently to achieve near equivalent classification accuracy to the full-precision neural networks.