论文标题

ivadomed:医学成像深度学习工具箱

ivadomed: A Medical Imaging Deep Learning Toolbox

论文作者

Gros, Charley, Lemay, Andreanne, Vincent, Olivier, Rouhier, Lucas, Bucquet, Anthime, Cohen, Joseph Paul, Cohen-Adad, Julien

论文摘要

Ivadomed是一个开源Python软件包,用于设计,端到端培训和评估应用于医学成像数据的深度学习模型。该软件包包括API,命令行工具,文档和教程。 Ivadomed还包括预先训练的模型,例如脊柱肿瘤分割和椎骨标记。 Ivadomed的原始特征包括一个数据加载程序,该数据加载程序可以解析图像元数据(例如,获取参数,图像对比度,分辨率)和受试者元数据(例如,病理,年龄,性别,性别),以获取自定义数据分裂或培训期间的额外信息。遵循大脑成像数据结构(BID)约定的任何数据集都将与Ivadomed兼容,而无需手动组织数据,这通常是一项繁琐的任务。除了传统的深度学习方法之外,ivadomed还具有较高的架构,例如电影和半岛,以及各种不确定性估计方法(质地和认知),以及适合于不平衡的类和非算力预测的损失。每个步骤均可通过单个文件方便地配置。同时,该代码是高度模块化的,可以允许添加/修改体系结构或预/后处理步骤。 Ivadomed的示例应用包括MRI对象检测,分割和解剖学和病理结构的标记。总体而言,Ivadomed可以轻松快速探索医学成像应用深度学习的最新进展。 Ivadomed的主项目页面可在https://ivadomed.org上找到。

ivadomed is an open-source Python package for designing, end-to-end training, and evaluating deep learning models applied to medical imaging data. The package includes APIs, command-line tools, documentation, and tutorials. ivadomed also includes pre-trained models such as spinal tumor segmentation and vertebral labeling. Original features of ivadomed include a data loader that can parse image metadata (e.g., acquisition parameters, image contrast, resolution) and subject metadata (e.g., pathology, age, sex) for custom data splitting or extra information during training and evaluation. Any dataset following the Brain Imaging Data Structure (BIDS) convention will be compatible with ivadomed without the need to manually organize the data, which is typically a tedious task. Beyond the traditional deep learning methods, ivadomed features cutting-edge architectures, such as FiLM and HeMis, as well as various uncertainty estimation methods (aleatoric and epistemic), and losses adapted to imbalanced classes and non-binary predictions. Each step is conveniently configurable via a single file. At the same time, the code is highly modular to allow addition/modification of an architecture or pre/post-processing steps. Example applications of ivadomed include MRI object detection, segmentation, and labeling of anatomical and pathological structures. Overall, ivadomed enables easy and quick exploration of the latest advances in deep learning for medical imaging applications. ivadomed's main project page is available at https://ivadomed.org.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源