论文标题
沿RICCI流的局部熵--- B部分:伪局部定理
The local entropy along Ricci flow---Part B: the pseudo-locality theorems
论文作者
论文摘要
我们将G. perelman的熵功能定位,并概括他的无本地胶卷定理和伪定理。从技术上讲,我们的概括是受到RICCI流程的Li-Yau估计的进一步发展的启发。它具有各种应用,包括显示RICCI流相对于Gromov-Hausdorff拓扑中的初始度量的连续依赖性,下面的RICCI曲率与RICCI曲率界定,并显示了Kähler歧管的紧凑性具有有界标量的curvature curvature和局部几乎局部e核的条件。
We localize the entropy functionals of G. Perelman and generalize his no-local-collapsing theorem and pseudo-locality theorem. Our generalization is technically inspired by further development of Li-Yau estimates along the Ricci flow. It has various applications, including to show the continuous dependence of the Ricci flow with respect to the initial metric in Gromov-Hausdorff topology with Ricci curvature bounded below, and to show the compactness of the moduli of Kähler manifolds with bounded scalar curvature and a rough locally almost Euclidean condition.