论文标题
因果网络图案:识别A/B测试中的异质溢出效应
Causal Network Motifs: Identifying Heterogeneous Spillover Effects in A/B Tests
论文作者
论文摘要
随机实验或“ A/B”测试仍然是评估政策干预或产品变化的因果效应的黄金标准。但是,用户正在互动和彼此影响的社交网络等实验环境可能会违反对可信因果推理的不干预的常规假设。网络设置的现有解决方案包括对用户网络中处理过的邻居的分数或计数的核算,但是大多数当前方法除了简单地计算邻居的数量外,没有考虑本地网络结构。我们的研究提供了一种方法,可以通过主题以及邻居的治疗分配条件来解释用户社交网络中的本地结构。我们提出了一种分为两部分的方法。我们首先介绍和采用“因果网络图案”,它们是特征本地自我网络中分配条件的网络图案;然后,我们提出了一种基于树的算法,用于识别不同的网络干扰条件并估算其平均潜在结果。我们的方法可以说明社交网络理论,例如结构多样性和回声室,也可以帮助指定适合每个实验的网络干扰条件。我们在合成网络设置上测试了我们的方法,并在大型网络上的现实世界实验上测试了我们的方法,该网络强调了本地结构如何更好地说明网络中的不同干扰模式。
Randomized experiments, or "A/B" tests, remain the gold standard for evaluating the causal effect of a policy intervention or product change. However, experimental settings, such as social networks, where users are interacting and influencing one another, may violate conventional assumptions of no interference for credible causal inference. Existing solutions to the network setting include accounting for the fraction or count of treated neighbors in a user's network, yet most current methods do not account for the local network structure beyond simply counting the number of neighbors. Our study provides an approach that accounts for both the local structure in a user's social network via motifs as well as the treatment assignment conditions of neighbors. We propose a two-part approach. We first introduce and employ "causal network motifs", which are network motifs that characterize the assignment conditions in local ego networks; and then we propose a tree-based algorithm for identifying different network interference conditions and estimating their average potential outcomes. Our approach can account for social network theories, such as structural diversity and echo chambers, and also can help specify network interference conditions that are suitable to each experiment. We test our method on a synthetic network setting and on a real-world experiment on a large-scale network, which highlight how accounting for local structures can better account for different interference patterns in networks.