论文标题

DeepApple:使用抑制面膜R-CNN的基于深度学习的苹果检测

DeepApple: Deep Learning-based Apple Detection using a Suppression Mask R-CNN

论文作者

Chu, Pengyu, Li, Zhaojian, Lammers, Kyle, Lu, Renfu, Liu, Xiaoming

论文摘要

机器人的苹果收获在过去几年中引起了很多研究的关注,这是由于劳动力的短缺和成本增加。一种促进自动收获的技术的一个关键是准确,可靠的苹果检测,这是由于复杂的果园环境带来的巨大挑战,涉及不同的照明条件和叶子/分支的闭塞。这封信报告了一个新型基于深度学习的苹果检测框架的开发,名为DeepApple。具体来说,我们首先在不同的照明条件下(阳光透明,阴影和前照明与后照明)收集了使用彩色相机的综合苹果果园数据集,用于“晚会”和“金发碧眼”苹果。然后,我们开发出一种新颖的抑制掩模R-CNN来进行Apple检测,其中将抑制分支添加到标准蒙版R-CNN中,以抑制原始网络生成的非苹果特征。进行了全面的评估,这表明开发的抑制面膜R-CNN网络的表现优于最先进的模型,其较高的F1得分为0.905,并且在标准台式计算机上每帧的检测时间为0.25秒。

Robotic apple harvesting has received much research attention in the past few years due to growing shortage and rising cost in labor. One key enabling technology towards automated harvesting is accurate and robust apple detection, which poses great challenges as a result of the complex orchard environment that involves varying lighting conditions and foliage/branch occlusions. This letter reports on the development of a novel deep learning-based apple detection framework named DeepApple. Specifically, we first collect a comprehensive apple orchard dataset for 'Gala' and 'Blondee' apples, using a color camera, under different lighting conditions (sunny vs. overcast and front lighting vs. back lighting). We then develop a novel suppression Mask R-CNN for apple detection, in which a suppression branch is added to the standard Mask R-CNN to suppress non-apple features generated by the original network. Comprehensive evaluations are performed, which show that the developed suppression Mask R-CNN network outperforms state-of-the-art models with a higher F1-score of 0.905 and a detection time of 0.25 second per frame on a standard desktop computer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源