论文标题
多政治Landau-Potts现场理论
A multicritical Landau-Potts field theory
论文作者
论文摘要
我们研究了一个可扰动的可重新汇总化$ s_ {q} $不变型模型,$ n = q-1 $标量字段组件下方下方关键尺寸$ d_c = \ frac {10} {3} $。我们的结果暗示,在三个维度上跨越随机簇和渗透的关键模型的多政治概括存在。我们还讨论了我们的多政治模型在涉及Potts模型$(d,q)$图中的第一阶和二阶阶段分离的猜想中的作用。
We investigate a perturbatively renormalizable $S_{q}$ invariant model with $N=q-1$ scalar field components below the upper critical dimension $d_c=\frac{10}{3}$. Our results hint at the existence of multicritical generalizations of the critical models of spanning random clusters and percolations in three dimensions. We also discuss the role of our multicritical model in a conjecture that involves the separation of first and second order phases in the $(d,q)$ diagram of the Potts model.