论文标题

分数手性铰链绝缘子

Fractional Chiral Hinge Insulator

论文作者

Hackenbroich, Anna, Hudomal, Ana, Schuch, Norbert, Bernevig, B. Andrei, Regnault, Nicolas

论文摘要

我们提出并研究了波函数,描述了由Gutzwiller投影构建的三维分数铰链铰链绝缘子(FCHI),该投影对两种非相互作用的二阶二级拓扑绝缘子,具有手性铰链模式在半填充时。我们使用大规模变分的蒙特卡洛计算来通过纠缠熵和电荷旋转 - 透胶来表征模型状态。我们表明,FCHI具有以中央电荷为特征的分数手性铰链模式$ C = 1 $和Luttinger参数$ K = 1/2 $,例如Laughlin $ 1/2 $状态的边缘模式。通过改变基础费米的边界条件,我们研究了FCHI的拓扑脱落性。在数值可访问的系统大小的范围内,我们观察到非平凡的拓扑脱落性。对区域定律的拓扑纠缠(TEE)校正提供了更为原始的块状拓扑表征。虽然我们的计算表明了一个消失的大块T恤,但我们表明,间隙表面的二维拓扑顺序,每表面与Laughlin $ 1/2 $状态的一半兼容,这一值无法从拓扑量子场理论中获得。

We propose and study a wave function describing an interacting three-dimensional fractional chiral hinge insulator (FCHI) constructed by Gutzwiller projection of two non-interacting second order topological insulators with chiral hinge modes at half filling. We use large-scale variational Monte Carlo computations to characterize the model states via the entanglement entropy and charge-spin-fluctuations. We show that the FCHI possesses fractional chiral hinge modes characterized by a central charge $c=1$ and Luttinger parameter $K=1/2$, like the edge modes of a Laughlin $1/2$ state. By changing the boundary conditions for the underlying fermions, we investigate the topological degeneracy of the FCHI. Within the range of the numerically accessible system sizes, we observe a non-trivial topological degeneracy. A more numerically pristine characterization of the bulk topology is provided by the topological entanglement entropy (TEE) correction to the area law. While our computations indicate a vanishing bulk TEE, we show that the gapped surfaces host a two-dimensional topological order with a TEE per surface compatible with half that of a Laughlin $1/2$ state, a value that cannot be obtained from topological quantum field theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源