论文标题

固体中使用正交富集的有限元素中的快速和健壮的全电子密度理论计算

Fast and robust all-electron density functional theory calculations in solids using orthogonalized enriched finite elements

论文作者

Rufus, Nelson D., Kanungo, Bikash, Gavini, Vikram

论文摘要

我们提出了一种使用富集的有限元(FE)基础的固体计算,以进行系统收敛的真实空间全电子DFT计算。通过以原子为中心的数值基础函数来增强经典的FE基础来构建丰富的Fe基,这包括原子解决方案对Kohn-Sham问题。值得注意的是,为了改善调节性,我们将富集功能正交相对于经典的FE基础,而无需牺牲所得基础的位置。除了改善条件外,这种正交过程还提供了重叠矩阵块 - 二角形,从而大大简化了其反转。随后,我们使用Chebyshev多项式滤波技术来有效计算每个自洽场迭代中的占用特征空间。我们证明了对周期性单位细胞和超细胞的拟议方法的准确性和效率。基准研究表明,在经典的FE基础上,正交富集的Fe基础的$ 130 \ times $速度。在准确性和效率方面,我们还提供了正交富集的Fe基础与LAPW+LO基础的比较。值得注意的是,我们证明了正交富集的FE基础可以处理$ \ sim $ 10,000电子的大型系统尺寸。

We present a computationally efficient approach to perform systematically convergent real-space all-electron Kohn-Sham DFT calculations for solids using an enriched finite element (FE) basis. The enriched FE basis is constructed by augmenting the classical FE basis with atom-centered numerical basis functions, comprising of atomic solutions to the Kohn-Sham problem. Notably, to improve the conditioning, we orthogonalize the enrichment functions with respect to the classical FE basis, without sacrificing the locality of the resultant basis. In addition to improved conditioning, this orthogonalization procedure also renders the overlap matrix block-diagonal, greatly simplifying its inversion. Subsequently, we use a Chebyshev polynomial based filtering technique to efficiently compute the occupied eigenspace in each self-consistent field iteration. We demonstrate the accuracy and efficiency of the proposed approach on periodic unit-cells and supercells. The benchmark studies show a staggering $130\times$ speedup of the orthogonalized enriched FE basis over the classical FE basis. We also present a comparison of the orthogonalized enriched FE basis with the LAPW+lo basis, both in terms of accuracy and efficiency. Notably, we demonstrate that the orthogonalized enriched FE basis can handle large system sizes of $\sim$10,000 electrons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源