论文标题

数据同化网络

Data Assimilation Networks

论文作者

Boudier, Pierre, Fillion, Anthony, Gratton, Serge, Gürol, Selime, Zhang, Sixin

论文摘要

数据同化(DA)的目的是通过将系统的数学表示与嘈杂的观察结果相结合来预测动态系统的状态,考虑到它们的不确定性。 TART方法的状态基于高斯误差统计和非线性动力学的线性化,这可能导致亚最佳方法。在这方面,仍然有开放的问题如何改进这些方法。在本文中,我们提出了一个完全数据驱动的深度学习体系结构,概括了复发性Elman网络和数据同化算法,该算法近似于以嘈杂观测为条件的先前和后密度序列。通过构造,我们的方法可用于一般的非线性动力学和非高斯密度。在基于众所周知的Lorenz-95系统和高斯误差统计的数值实验上,我们的体系结构在给定时间的分析和传播系统状态的分析和传播中,在没有使用任何显式正则技术的情况下,在系统状态的分析和传播方面达到了可比的性能。

Data assimilation (DA) aims at forecasting the state of a dynamical system by combining a mathematical representation of the system with noisy observations taking into account their uncertainties. State of the art methods are based on the Gaussian error statistics and the linearization of the non-linear dynamics which may lead to sub-optimal methods. In this respect, there are still open questions how to improve these methods. In this paper, we propose a fully data driven deep learning architecture generalizing recurrent Elman networks and data assimilation algorithms which approximate a sequence of prior and posterior densities conditioned on noisy observations. By construction our approach can be used for general nonlinear dynamics and non-Gaussian densities. On numerical experiments based on the well-known Lorenz-95 system and with Gaussian error statistics, our architecture achieves comparable performance to EnKF on both the analysis and the propagation of probability density functions of the system state at a given time without using any explicit regularization technique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源