论文标题

噪声驱动的混沌动力学变化

Noise-driven Topological Changes in Chaotic Dynamics

论文作者

Charó, Gisela D., Chekroun, Mickaël D., Sciamarella, Denisse, Ghil, Michael

论文摘要

噪声以定量和定性方式改变了混乱系统的行为。为了研究这些修改,目前的工作将确定性洛伦兹(1963)吸引子的拓扑结构与其随机扰动的版本进行了比较。确定性的吸引子众所周知是“奇怪的”,但及时被冻结了。当Lorenz模型的随机吸引子(Lora)驱动时,随着时间的推移会演变。代数拓扑阐明了这种进化所涉及的最引人注目的效果。为了检查近似Lora的快照的拓扑结构,我们通过同源物(BRAMAH)使用分支的歧管分析 - 一种最初引入的技术来表征确定性混乱的流动的拓扑结构 - 在这里将其扩展到非线性噪声驱动的系统中。进行分析以固定在不同时间瞬间的固定实现。结果表明,洛拉的演变包括作为拓扑倾斜点的急剧转变。

Noise modifies the behavior of chaotic systems in both quantitative and qualitative ways. To study these modifications, the present work compares the topological structure of the deterministic Lorenz (1963) attractor with its stochastically perturbed version. The deterministic attractor is well known to be "strange" but it is frozen in time. When driven by multiplicative noise, the Lorenz model's random attractor (LORA) evolves in time. Algebraic topology sheds light on the most striking effects involved in such an evolution. In order to examine the topological structure of the snapshots that approximate LORA, we use Branched Manifold Analysis through Homologies (BraMAH) -- a technique originally introduced to characterize the topological structure of deterministically chaotic flows -- which is being extended herein to nonlinear noise-driven systems. The analysis is performed for a fixed realization of the driving noise at different time instants in time. The results suggest that LORA's evolution includes sharp transitions that appear as topological tipping points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源