论文标题
Burton-Cabrera-Frank理论,具有交替步骤类型的表面
Burton-Cabrera-Frank theory for surfaces with alternating step types
论文作者
论文摘要
Burton-Cabrera-Frank(BCF)理论已被证明是一个多功能框架,可将晶体生长过程中的表面形态和动态与Adatom扩散和附着的基本机制相关联。对于一类重要的晶体表面,包括六角形封闭式和相关系统的基础平面,序列上的步骤可以表现出可以从步骤到步骤交替的特性。在这里,我们为此类表面开发了BCF理论,将可观察到的物品(例如交替的露台宽度作为生长条件的函数)与动态系数的函数与adatom附着的动力学系数。我们包括步骤透明度和步骤排斥的影响。假设露台上的准稳态ADATOM分布,获得了露台宽度动力学的一般解决方案。在广泛适用的近似值下获得了明确的简化分析解决方案。由此,我们获得了全态状态露台分数的表达,这是增长率的函数。在有机金属蒸气相期间,理论预测的最新实验确定GAN(0001)表面上露台(0001)表面的稳态和动力学的拟合度拟合,从而给出了该系统的动力学系数的值。在附录中,我们还将一个模型连接到一个模型,以扩散步骤之间的扩散,以在梯田上的步骤之间扩散,该模型将步骤透明度与扭结的原子附着动力学相关联,并考虑限制扩散限制,附件固定,限制限制和混合动力学的情况。
Burton-Cabrera-Frank (BCF) theory has proven to be a versatile framework to relate surface morphology and dynamics during crystal growth to the underlying mechanisms of adatom diffusion and attachment at steps. For an important class of crystal surfaces, including the basal planes of hexagonal close-packed and related systems, the steps in a sequence on a vicinal surface can exhibit properties that alternate from step to step. Here we develop BCF theory for such surfaces, relating observables such as alternating terrace widths as a function of growth conditions to the kinetic coefficients for adatom attachment at steps. We include the effects of step transparency and step-step repulsion. A general solution is obtained for the dynamics of the terrace widths, assuming quasi-steady-state adatom distributions on the terraces. An explicit simplified analytical solution is obtained under widely applicable approximations. From this we obtain expressions for the full-steady-state terrace fraction as a function of growth rate. Fits of the theoretical predictions to recent experimental determinations of the steady-state and dynamics of terrace fractions on GaN (0001) surfaces during organo-metallic vapor phase epitaxy give values of the kinetic coefficients for this system. In Appendices, we also connect a model for diffusion between kinks on steps to the model for diffusion between steps on terraces, which quantitatively relates step transparency to the kinetics of atom attachment at kinks, and consider limiting cases of diffusion-limited, attachment-limited, and mixed kinetics.