论文标题

在可发展的机器人中学习运动技能

Learning Locomotion Skills in Evolvable Robots

论文作者

Lan, Gongjin, van Hooft, Maarten, De Carlo, Matteo, Tomczak, Jakub M., Eiben, A. E.

论文摘要

机器人繁殖的挑战 - 通过重新组合两个现有的机器人制造新机器人 - 最近已经破解了机器人系统的挑战。在这里,我们解决了下一个大障碍:为新生机器人产生足够的大脑。特别是,我们解决了有针对性的运动的任务,这可以说是任何实际实施中的基本技能。我们介绍了控制器体系结构和一种通用学习方法,以允许具有任意形状的模块化机器人,以学习朝目标行走,并在该目标移动时遵循该目标。在三个现实世界中,我们的方法在三个机器人,一个蜘蛛,壁虎及其后代进行了验证。

The challenge of robotic reproduction -- making of new robots by recombining two existing ones -- has been recently cracked and physically evolving robot systems have come within reach. Here we address the next big hurdle: producing an adequate brain for a newborn robot. In particular, we address the task of targeted locomotion which is arguably a fundamental skill in any practical implementation. We introduce a controller architecture and a generic learning method to allow a modular robot with an arbitrary shape to learn to walk towards a target and follow this target if it moves. Our approach is validated on three robots, a spider, a gecko, and their offspring, in three real-world scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源