论文标题

连续,换能器和常规功能的可计算分类

Computable classifications of continuous, transducer, and regular functions

论文作者

Franklin, Johanna N. Y., Hölzl, Rupert, Melnikov, Alexander, Ng, Keng Meng, Turetsky, Daniel

论文摘要

我们开发了一种系统的算法框架,该框架使用索引集将全球和本地分类问题团结起来。我们证明,连续(二进制)常规函数的分类问题几乎在线性中,线性时lipschitz函数为$σ^0_2 $ -complete。 (每个常规函数都是点式线性时间lipschitz。)我们证明$ f \ colon [0,1] \ rightArrow \ mathbb {r} $ is(binary)trandducer当它连续常规时。作为许多后果之一,我们的$σ^0_2 $ - 复杂性结果也涵盖了换能器函数的类。最后,我们证明了Banach Space $ c [0,1] $实价连续功能承认可分离的Banach空间之间的算术分类。我们的证明结合了抽象可计算理论,自动机理论和功能分析的方法。

We develop a systematic algorithmic framework that unites global and local classification problems using index sets. We prove that the classification problem for continuous (binary) regular functions among almost everywhere linear, pointwise linear-time Lipschitz functions is $Σ^0_2$-complete. (Every regular function is pointwise linear-time Lipschitz.) We show that a function $f\colon [0,1] \rightarrow \mathbb{R}$ is (binary) transducer if and only if it is continuous regular. As one of many consequences, our $Σ^0_2$-completeness result covers the class of transducer functions as well. Finally, we show that the Banach space $C[0,1]$ of real-valued continuous functions admits an arithmetical classification among separable Banach spaces. Our proofs combine methods of abstract computability theory, automata theory, and functional analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源