论文标题

基于多任务学习的空气动力学数据预测

Aerodynamic Data Predictions Based on Multi-task Learning

论文作者

Hu, Liwei, Xiang, Yu, Zhan, Jun, Shi, Zifang, Wang, Wenzheng

论文摘要

数据集的质量是影响空气动力学数据模型准确性的关键因素之一。例如,在统一采样的汉堡数据集中,高速数据不足以被大量的低速数据淹没。由于高速数据的数量受到限制,即汉堡数据集的质量并不令人满意,因此预测高速数据比预测低速数据更加困难。为了提高数据集的质量,传统方法通常采用数据重采样技术来生成足够的数据,以便在建模之前原始数据集中的零件不足,从而增加了计算成本。最近,专家的混合物已用于自然语言处理中,以处理句子的不同部分,该句子提供了消除空气动力学数据建模中数据重新采样的需求的解决方案。在此激励的情况下,我们提出了多任务学习(MTL),即数据集质量自适应学习方案,该方案结合了任务分配和空气动力学特征,以分散整个学习任务的压力。任务分配将整个学习任务分为几个独立的子任务,而空气动力学特征学习同时学习这些子任务以实现更好的精度。进行了两个具有较差数据集的实验,以验证MTL到数据集的数据质量适应性。结果表明,在质量差的数据集中,MTL比FCN和GAN更准确。

The quality of datasets is one of the key factors that affect the accuracy of aerodynamic data models. For example, in the uniformly sampled Burgers' dataset, the insufficient high-speed data is overwhelmed by massive low-speed data. Predicting high-speed data is more difficult than predicting low-speed data, owing to that the number of high-speed data is limited, i.e. the quality of the Burgers' dataset is not satisfactory. To improve the quality of datasets, traditional methods usually employ the data resampling technology to produce enough data for the insufficient parts in the original datasets before modeling, which increases computational costs. Recently, the mixtures of experts have been used in natural language processing to deal with different parts of sentences, which provides a solution for eliminating the need for data resampling in aerodynamic data modeling. Motivated by this, we propose the multi-task learning (MTL), a datasets quality-adaptive learning scheme, which combines task allocation and aerodynamic characteristics learning together to disperse the pressure of the entire learning task. The task allocation divides a whole learning task into several independent subtasks, while the aerodynamic characteristics learning learns these subtasks simultaneously to achieve better precision. Two experiments with poor quality datasets are conducted to verify the data quality-adaptivity of the MTL to datasets. The results show than the MTL is more accurate than FCNs and GANs in poor quality datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源