论文标题
多屈光度波函数:结构和示例
Many-fermion wave functions: structure and examples
论文作者
论文摘要
多特里米安·希尔伯特(Hilbert)空间具有由有限数量的反对称函数(称为形状的反对称函数)产生的自由模块的代数结构。从物理上讲,每种形状都是多体真空,其激发通过对称函数(玻色子)描述。骨气激发的无穷大介绍了希尔伯特空间的无穷大,而所有形状均可以封闭形式生成算法。这些形状是波功能空间中的几何对象,因此任何给定的多体真空都是它们的交点。实验室空间中的相关效应是波功能空间中的几何约束。代数几何是量子力学粒子图片的自然数学框架。给出了该方案的简单示例,从处理非常大的功能空间的角度描述了生成形状的当前状态。
Many-fermion Hilbert space has the algebraic structure of a free module generated by a finite number of antisymmetric functions called shapes. Physically, each shape is a many-body vacuum, whose excitations are described by symmetric functions (bosons). The infinity of bosonic excitations accounts for the infinity of Hilbert space, while all shapes can be generated algorithmically in closed form. The shapes are geometric objects in wave-function space, such that any given many-body vacuum is their intersection. Correlation effects in laboratory space are geometric constraints in wave-function space. Algebraic geometry is the natural mathematical framework for the particle picture of quantum mechanics. Simple examples of this scheme are given, and the current state of the art in generating shapes is described from the viewpoint of treating very large function spaces.