论文标题

导数非线性schrödinger方程:奇异的歧管方法和谎言对称性

Derivative non-linear Schrödinger equation: Singular manifold method and Lie symmetries

论文作者

Albares, Paz, Estévez, Pilar García, Lejarreta, Juan Domingo

论文摘要

我们介绍了1+1维中衍生物非线性schrödinger方程的可集成性特性的广义研究和表征。通过miura变换和单数歧管方法,为此方程得出了一个宽松对。该过程与Darboux转换一起,使我们能够构建广泛的类似孤子的解决方案。还已经计算出谎言经典的对称性,并分析并讨论了相似性降低。

We present a generalized study and characterization of the integrability properties of the derivative non-linear Schrödinger equation in 1+1 dimensions. A Lax pair is derived for this equation by means of a Miura transformation and the singular manifold method. This procedure, together with the Darboux transformations, allow us to construct a wide class of rational soliton-like solutions. Lie classical symmetries have also been computed and similarity reductions have been analyzed and discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源