论文标题
大规模勘探任务的弹性和高效的LIDAR重建
Elastic and Efficient LiDAR Reconstruction for Large-Scale Exploration Tasks
论文作者
论文摘要
我们提出了一个有效的弹性3D LiDAR重建框架,该框架可以以每秒多个帧的速度重建最大的LIDAR范围(60 m),从而在大规模环境中启用机器人勘探。我们的方法只需要CPU。我们专注于大规模重建的三个主要挑战:在高频上的远程激光雷达扫描,检测到循环封闭后变形重建的能力以及长时间探索的可扩展性。我们的系统扩展了一种最先进的RGB-D体积重建技术,称为“超视力”,以支持LIDAR扫描,并采用新开发的sugmapping技术,以允许对3D重建的动态校正。然后,我们引入了一种新颖的姿势图聚类和子束融合功能,以使所提出的系统在大型环境中更可扩展。我们使用两个公共数据集评估了性能,包括带有手持设备和无人机的户外探索,以及一个移动机器人探索地下房间网络。实验结果表明,我们的系统可以在3 Hz下以60 m的传感器范围和〜5 cm的分辨率重建,而最新方法只能在相同频率下重建为25 cm的分辨率或20 m范围。
We present an efficient, elastic 3D LiDAR reconstruction framework which can reconstruct up to maximum LiDAR ranges (60 m) at multiple frames per second, thus enabling robot exploration in large-scale environments. Our approach only requires a CPU. We focus on three main challenges of large-scale reconstruction: integration of long-range LiDAR scans at high frequency, the capacity to deform the reconstruction after loop closures are detected, and scalability for long-duration exploration. Our system extends upon a state-of-the-art efficient RGB-D volumetric reconstruction technique, called supereight, to support LiDAR scans and a newly developed submapping technique to allow for dynamic correction of the 3D reconstruction. We then introduce a novel pose graph clustering and submap fusion feature to make the proposed system more scalable for large environments. We evaluate the performance using two public datasets including outdoor exploration with a handheld device and a drone, and with a mobile robot exploring an underground room network. Experimental results demonstrate that our system can reconstruct at 3 Hz with 60 m sensor range and ~5 cm resolution, while state-of-the-art approaches can only reconstruct to 25 cm resolution or 20 m range at the same frequency.