论文标题
非本地扩散模型的(移位)分段二次多项式搭配的分析
Analysis of (shifted) piecewise quadratic polynomial collocation for nonlocal diffusion model
论文作者
论文摘要
分段二次多项式搭配用于近似非局部模型,该模型通常获得{\ em非对称不确定系统} [Chen等,Ima J. Numer。肛门,(2021)]。在这种情况下,不满足离散的最大原理,这对于高阶数值方案的稳定性分析可能会更棘手[D'Elia等人,Acta numer。,(2020); Leng等人,Siam J. Numer。肛门,(2021)]。在这里,我们介绍了修改的(转移对称)分段二次多项式搭配,用于求解线性非局部扩散模型,该模型具有{\ em对称的正定确定系统},并满足离散的最大原理。使用Faulhaber的公式和Riemann Zeta函数,给出了对称正定系统和非对称不确定系统的扰动误差。然后提供了具有一般地平线参数$δ= \ Mathcal {O} \ left(H^β\ right)$,$β\ geq0 $的非本地模型的收敛分析的详细证明。更具体地说,全局错误是$ \ MATHCAL {o} \ left(H^{\ min \ left \ left \ {2,1+β\ right \}}} \ right)$如果$δ$未设置为网格点,但它应恢复$ \ MATHCAL {o} \ left(h^{\ max \ left \ {2,4-2β\ right \}}} \ right)$当$δ$设置为网格点时。我们还证明,转移的对称方案是渐近兼容的,它具有全局误差$ \ MATHCAL {O} \ left(h^{h^{\ min \ left \ weft \ {2,2β\ right \}}} \ right)$ aS $δ,h \ rightarrow 0 $。进行数值实验(包括二维情况)以验证收敛性。
The piecewise quadratic polynomial collocation is used to approximate the nonlocal model, which generally obtain the {\em nonsymmetric indefinite system} [Chen et al., IMA J. Numer. Anal., (2021)]. In this case, the discrete maximum principle is not satisfied, which might be trickier for the stability analysis of the high-order numerical schemes [D'Elia et al., Acta Numer., (2020); Leng et al., SIAM J. Numer. Anal., (2021)]. Here, we present the modified (shifted-symmetric) piecewise quadratic polynomial collocation for solving the linear nonlocal diffusion model, which has the {\em symmetric positive definite system} and satisfies the discrete maximum principle. Using Faulhaber's formula and Riemann zeta function, the perturbation error for symmetric positive definite system and nonsymmetric indefinite systems are given. Then the detailed proof of the convergence analysis for the nonlocal models with the general horizon parameter $δ=\mathcal{O}\left(h^β\right)$, $β\geq0$ are provided. More concretely, the global error is $\mathcal{O}\left(h^{\min\left\{2,1+β\right\}}\right)$ if $δ$ is not set as a grid point, but it shall recover $\mathcal{O}\left(h^{\max\left\{2,4-2β\right\}}\right)$ when $δ$ is set as a grid point. We also prove that the shifted-symmetric scheme is asymptotically compatible, which has the global error $\mathcal{O}\left(h^{\min\left\{2,2β\right\}}\right)$ as $δ,h\rightarrow 0$. The numerical experiments (including two-dimensional case) are performed to verify the convergence.