论文标题

有完美订单课程的汉密尔顿团体

Hamiltonian Groups with Perfect Order Classes

论文作者

McCarron, James

论文摘要

如果任何给定订单的要素的数量为零,则有限组具有“完美的订单类”。 本说明的目的是用完美的订单课程明确描述有限的哈密顿群体。我们表明,有限的哈密顿群集团有完美的订单课程,并且只有当它与四订单订单$ 8 $的直接产品同构时,一个非平凡的循环$ 3 $ - 组和最多2美元的订单。 定理。有限的汉密尔顿组有完美的订单类,并且只有在$ q \ times c_ {3^k} $或$ q \ q \ times c_ {2} \ times c_ {3^k} $中,对于某些正整数$ k $而言。

A finite group is said to have "perfect order classes" if the number of elements of any given order is either zero or a divisor of the order of the group. The purpose of this note is to describe explicitly the finite Hamiltonian groups with perfect order classes. We show that a finite Hamiltonian group has perfect order classes if, and only if, it is isomorphic to the direct product of the quaternion group of order $8$, a non-trivial cyclic $3$-group and a group of order at most $2$. Theorem. A finite Hamiltonian group has perfect order classes if, and only if, it is isomorphic either to $Q\times C_{3^k}$ or to $Q\times C_{2}\times C_{3^k}$, for some positive integer $k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源