论文标题
对数对称分位数回归模型
Log-symmetric quantile regression models
论文作者
论文摘要
当响应严格为正和不对称时,基于对数分布的对称对称性家族的回归模型特别有用。在本文中,我们提出了一类基于重聚对数对称分布的分位数回归模型,该分布具有分位数参数。使用R软件进行了两项蒙特卡洛模拟研究。第一个分析了最大似然估计器的性能,信息标准AIC,BIC和AICC,以及广义的Cox-Snell和随机分数残差。第二个评估了WALD,似然比,得分和梯度测试的大小和功率的性能。最终分析了真正的票房数据集,以说明所提出的方法。
Regression models based on the log-symmetric family of distributions are particularly useful when the response is strictly positive and asymmetric. In this paper, we propose a class of quantile regression models based on reparameterized log-symmetric distributions, which have a quantile parameter. Two Monte Carlo simulation studies are carried out using the R software. The first one analyzes the performance of the maximum likelihood estimators, the information criteria AIC, BIC and AICc, and the generalized Cox-Snell and random quantile residuals. The second one evaluates the performance of the size and power of the Wald, likelihood ratio, score and gradient tests. A real box office data set is finally analyzed to illustrate the proposed approach.