论文标题
平面实际伪酚形曲线的代数无法实现的复杂取向
Algebraically unrealizable complex orientations of plane real pseudoholomorphic curves
论文作者
论文摘要
我们证明了两种不等式的不等式(I型)在任何奇数度的$ rp^2 $中的分离(I型)非单明的真实代数曲线。我们还构建了一个与9 Mod 12的任何程度的$ rp^2 $中分离的非单明性假酚形态曲线,该曲线不满足这些不平等之一。因此,这些曲线的实际轨迹的定向同位素类型在代数上是无法实现的。
We prove two inequalities for the complex orientations of a separating (Type I) non-singular real algebraic curve in $RP^2$ of any odd degree. We also construct a separating non-singular pseudoholomorphic curve in $RP^2$ of any degree congruent to 9 mod 12 which does not satisfies one of these inequalities. Therefore the oriented isotopy type of the real locus of each of these curves is algebraically unrealizable.