论文标题

平面实际伪酚形曲线的代数无法实现的复杂取向

Algebraically unrealizable complex orientations of plane real pseudoholomorphic curves

论文作者

Orevkov, S. Yu.

论文摘要

我们证明了两种不等式的不等式(I型)在任何奇数度的$ rp^2 $中的分离(I型)非单明的真实代数曲线。我们还构建了一个与9 Mod 12的任何程度的$ rp^2 $中分离的非单明性假酚形态曲线,该曲线不满足这些不平等之一。因此,这些曲线的实际轨迹的定向同位素类型在代数上是无法实现的。

We prove two inequalities for the complex orientations of a separating (Type I) non-singular real algebraic curve in $RP^2$ of any odd degree. We also construct a separating non-singular pseudoholomorphic curve in $RP^2$ of any degree congruent to 9 mod 12 which does not satisfies one of these inequalities. Therefore the oriented isotopy type of the real locus of each of these curves is algebraically unrealizable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源