论文标题

重新审视飞机障碍物之间的最短路径

Shortest Paths Among Obstacles in the Plane Revisited

论文作者

Wang, Haitao

论文摘要

鉴于平面中的一组成对的脱节多边形障碍,在两个点之间找到避开避免障碍物的欧几里得的最短路径是计算几何学的经典问题,并且已经进行了广泛的研究。先前的最佳算法是由Hershberger和Suri提供的[FOCS 1993,SIAM J. Comput。 1999年]和算法以$ O(n \ log n)$时间和$ o(n \ log n)$空间运行,其中$ n $是所有障碍物的总数。该算法是时间优势,因为$ω(n \ log n)$是下限。二十年来,这是一个空旷的问题,是否可以将空间缩小为$ o(n)$。在本文中,我们通过解决$ O(n \ log n)$时间和$ o(n)$ space中的问题来解决它,这在时间和空间上都是最佳的;我们通过修改Hershberger和Suri的算法来实现这一目标。像他们的原始算法一样,我们的新算法可以为$ o(n \ log n)$时间和$ o(n)$ space的源点$ s $构建最短的路径图,因此可以在$ s $到$ t $的最短路径到$ o的最短路径的长度,可以以$ o(\ log n)的途径计算出最短的路径,并以最短的时间和最短的时间计算。

Given a set of pairwise disjoint polygonal obstacles in the plane, finding an obstacle-avoiding Euclidean shortest path between two points is a classical problem in computational geometry and has been studied extensively. The previous best algorithm was given by Hershberger and Suri [FOCS 1993, SIAM J. Comput. 1999] and the algorithm runs in $O(n\log n)$ time and $O(n\log n)$ space, where $n$ is the total number of vertices of all obstacles. The algorithm is time-optimal because $Ω(n\log n)$ is a lower bound. It has been an open problem for over two decades whether the space can be reduced to $O(n)$. In this paper, we settle it by solving the problem in $O(n\log n)$ time and $O(n)$ space, which is optimal in both time and space; we achieve this by modifying the algorithm of Hershberger and Suri. Like their original algorithm, our new algorithm can build a shortest path map for a source point $s$ in $O(n\log n)$ time and $O(n)$ space, such that given any query point $t$, the length of a shortest path from $s$ to $t$ can be computed in $O(\log n)$ time and a shortest path can be produced in additional time linear in the number of edges of the path.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源