论文标题

使用分位数回归解决变异自动编码器中的差异

Addressing Variance Shrinkage in Variational Autoencoders using Quantile Regression

论文作者

Akrami, Haleh, Joshi, Anand A., Aydore, Sergul, Leahy, Richard M.

论文摘要

深度学习模型中不确定性的估计至关重要,尤其是在医学成像中,在不考虑不确定性的情况下依赖推断可能导致误诊。最近,概率变化自动编码器(VAE)已成为在医学图像中病变检测等应用中检测异常检测的流行模型。 VAE是一种生成图形模型,用于从样品中学习数据分布,然后从该分布中生成新样本。通过对普通样品进行培训,可以使用VAE来检测偏离该学到的分布的输入。 VAE将输出模拟为有条件独立的高斯,其特征是每个输出维度的均值和方差。因此,VAE可以使用重建概率而不是重建误差进行异常检测。不幸的是,VAE中平均值和方差的关节优化导致众所周知的收缩或低估方差问题。我们描述了一种替代方法,该方法可以通过使用分位数回归来避免这种差异问题。使用估计的分位数来计算高斯假设下的平均值和方差,我们将重建概率计算为原则性的异常检测方法或异常检测方法。模拟和时尚MNIST数据的结果证明了我们方法的有效性。我们还展示了如何将我们的方法用于脑图像中病变检测的原则异质阈值。

Estimation of uncertainty in deep learning models is of vital importance, especially in medical imaging, where reliance on inference without taking into account uncertainty could lead to misdiagnosis. Recently, the probabilistic Variational AutoEncoder (VAE) has become a popular model for anomaly detection in applications such as lesion detection in medical images. The VAE is a generative graphical model that is used to learn the data distribution from samples and then generate new samples from this distribution. By training on normal samples, the VAE can be used to detect inputs that deviate from this learned distribution. The VAE models the output as a conditionally independent Gaussian characterized by means and variances for each output dimension. VAEs can therefore use reconstruction probability instead of reconstruction error for anomaly detection. Unfortunately, joint optimization of both mean and variance in the VAE leads to the well-known problem of shrinkage or underestimation of variance. We describe an alternative approach that avoids this variance shrinkage problem by using quantile regression. Using estimated quantiles to compute mean and variance under the Gaussian assumption, we compute reconstruction probability as a principled approach to outlier or anomaly detection. Results on simulated and Fashion MNIST data demonstrate the effectiveness of our approach. We also show how our approach can be used for principled heterogeneous thresholding for lesion detection in brain images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源