论文标题
Qugan:基于量子状态的基于量子的生成对抗网络
QuGAN: A Quantum State Fidelity based Generative Adversarial Network
论文作者
论文摘要
在人工智能中,已经看到了神经网络支持深度学习系统的巨大进展,几乎在每个领域中都有应用。作为代表性的深度学习框架,生成的对抗网络(GAN)已被广泛用于生成人工图像,文本对图像或图像扩展,跨科学,艺术和视频游戏。但是,甘斯在计算上昂贵,有时在计算上是过于刺激的。此外,训练可能会遭受融合失败和模态崩溃的困扰。为了实现实用量子计算机的用例加速,我们提出了Qugan,Qugan是一种量子GAN结构,可提供稳定的收敛性,基于量子状态的梯度并大大减少参数集。 Qugan架构同时纯粹在量子状态保真度上运行鉴别器和发电机,并利用Qubits上的交换测试来计算基于量子的损失函数的值。 Qugan建立在量子层的基础上,与经典gan相比,参数降低了94.98%的性能。此外,在文献中,Qugan优于最先进的基于量子的GAN,与在生成的分布和原始数据集之间的相似性相似性方面,系统性能的最先进的gan可提供48.33%的系统性能提高。 Qugan代码在https://github.com/yingmao/quantum-generative-versarial-network上发布
Tremendous progress has been witnessed in artificial intelligence where neural network backed deep learning systems have been used, with applications in almost every domain. As a representative deep learning framework, Generative Adversarial Network (GAN) has been widely used for generating artificial images, text-to-image or image augmentation across areas of science, arts and video games. However, GANs are computationally expensive, sometimes computationally prohibitive. Furthermore, training GANs may suffer from convergence failure and modal collapse. Aiming at the acceleration of use cases for practical quantum computers, we propose QuGAN, a quantum GAN architecture that provides stable convergence, quantum-state based gradients and significantly reduced parameter sets. The QuGAN architecture runs both the discriminator and the generator purely on quantum state fidelity and utilizes the swap test on qubits to calculate the values of quantum-based loss functions. Built on quantum layers, QuGAN achieves similar performance with a 94.98% reduction on the parameter set when compared to classical GANs. With the same number of parameters, additionally, QuGAN outperforms state-of-the-art quantum based GANs in the literature providing a 48.33% improvement in system performance compared to others attaining less than 0.5% in terms of similarity between generated distributions and original data sets. QuGAN code is released at https://github.com/yingmao/Quantum-Generative-Adversarial-Network